Bir doğru üzerindeki noktaların koordinatlarını veren eşitliğe doğrunun denklemi denir. y = mx + n y = mx + n eşitliğinde m: eğim, n: sabit sayıdır. ax + by + c = 0 şeklinde verilen denklemde y yalnız bırakılırsa elde edilir x in katsayısı eğimi verir. Öyle ise, ax + by + c = 0 doğrusunun eğimi
Bir doğru üzerindeki noktaların koordinatlarını veren eşitliğe doğrunun denklemi denir.
y = mx + n eşitliğinde m: eğim, n: sabit sayıdır. ax + by + c = 0 şeklinde verilen denklemde y yalnız bırakılırsa
x in katsayısı eğimi verir.
Öyle ise,
ax + by + c = 0 doğrusunun eğimi
Eğimi eşit olan doğrulara paralel doğrular denir. Doğruların eğimleri arasındaki bağıntıdan daha sonra bahsedeceğiz.
2. İki Noktası Bilinen Doğrunun Eğim ve Denklemi
a. İki noktası bilinen doğrunun eğimi
Analitik düzlemde A(x1, y1), B(x2, y2) noktaları bilinen d doğrusu üzerinde A, B noktalarının koordinatları kullanılarak oluşturulan ABC üçgeninin A açısı ile d doğrusunun eğim açısı yöndeş açılar olduklarından eşittirler.
Buradan
şeklinde de yazılabilir
b. İki noktası bilinen doğrunun denklemi
A(x1, y1), B(x2, y2) noktalarından geçen d doğrusu üzerinde doğruyu oluşturan noktaları temsil eden P(x, y) noktası alalım. Bu üç noktadan herhangi ikisini kullanarak yazacağımız eğimler eşittir. Buna göre,
Bu eşitlik bize iki noktası bilinen doğru denklemini verir.
şeklinde de yazılabilir. Sonuç aynıdır.
y = mx + n denklemindeki n terimi sıfır olur.
O halde orijinden geçen doğrunun eğimi m ise denklemi
Doğru denklemi ax + by + c = 0 şeklinde ise ve orijinden geçiyorsa c = 0 dır.
Doğru denklemi ax + by = 0 olur.
3. Bir Noktası ve Eğimi Bilinen Doğrunun Denklemi
A(x1, y1) noktası ve P(x, y) noktası kullanılarak yazılan eğim değeri verilen eğime eşitlenir.
4. Eksenlere Paralel Doğruların Denklemi
a. Eksen doğruları
Analitik düzlemde x (apsis) ekseninde bütün noktaların y si (ordinatı) sıfır olduğundan x ekseni aynı zamanda y = 0 doğrusudur.
y (ordinat) ekseni de x = 0 doğrusudur.
b. x eksenine paralel doğrular
c. y eksenine paralel doğrular
x = k doğrusu;
x eksenini k noktasında keser, y eksenine paralel ve x eksenine diktir.
5. Eksenleri Kestiği Noktaları Bilinen Doğruların Denklemi
x eksenini a noktasında y eksenini de b noktasında kesen doğrunun denklemi
Doğru (a, 0) ve (0, b) noktalarından geçtiğine göre, doğrunun denklemi iki noktadan geçen doğru denklemi özelliği kullanılarak da yazılabilir.
doğrusu denir.
6. Doğruların Grafikleri
Doğruların grafiklerini çizmek için x ve y eksenlerini kestikleri noktalar bulunur.
x eksenini kestiği nokta için y = 0 ve y eksenini kestiği nokta için x = 0 değerleri alınır.
2024 Tüm hakları saklıdır. /İletişim:sorucam@gmail.com